Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia
نویسندگان
چکیده
The FANCJ DNA helicase is mutated in hereditary breast and ovarian cancer as well as the progressive bone marrow failure disorder Fanconi anemia (FA). FANCJ is linked to cancer suppression and DNA double strand break repair through its direct interaction with the hereditary breast cancer associated gene product, BRCA1. FANCJ also operates in the FA pathway of interstrand cross-link repair and contributes to homologous recombination. FANCJ collaborates with a number of DNA metabolizing proteins implicated in DNA damage detection and repair, and plays an important role in cell cycle checkpoint control. In addition to its role in the classical FA pathway, FANCJ is believed to have other functions that are centered on alleviating replication stress. FANCJ resolves G-quadruplex (G4) DNA structures that are known to affect cellular replication and transcription, and potentially play a role in the preservation and functionality of chromosomal structures such as telomeres. Recent studies suggest that FANCJ helps to maintain chromatin structure and preserve epigenetic stability by facilitating smooth progression of the replication fork when it encounters DNA damage or an alternate DNA structure such as a G4. Ongoing studies suggest a prominent but still not well-understood role of FANCJ in transcriptional regulation, chromosomal structure and function, and DNA damage repair to maintain genomic stability. This review will synthesize our current understanding of the molecular and cellular functions of FANCJ that are critical for chromosomal integrity.
منابع مشابه
FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids
The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and ...
متن کاملThe DNA repair helicases XPD and FancJ have essential iron-sulfur domains.
DNA helicases are essential components of the cellular machinery for DNA replication, recombination, repair, and transcription. The XPD and FancJ proteins are related helicases involved in the nucleotide excision repair (NER) and Fanconi anemia repair pathways, respectively. We demonstrate that both proteins have a conserved domain near the N terminus that includes an iron-sulfur (Fe-S) cluster...
متن کاملFanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes.
Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and susceptibility to leukemia and other cancers. FANCJ, one of 13 genes linked to FA, encodes a DNA helicase proposed to operate in homologous recombination repair and replicational stress response. The pathogenic FANCJ-A349P amino acid substitution resides immediately adjacent to a highly ...
متن کاملFANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation.
Nucleotide excision repair (NER) is critical for the repair of DNA lesions induced by UV radiation, but its contribution in replicating cells is less clear. Here, we show that dual incision by NER endonucleases, including XPF and XPG, promotes the S-phase accumulation of the BRCA1 and Fanconi anemia-associated DNA helicase FANCJ to sites of UV-induced damage. FANCJ promotes replication protein ...
متن کاملInhibition of BACH1 (FANCJ) helicase by backbone discontinuity is overcome by increased motor ATPase or length of loading strand
The BRCA1 associated C-terminal helicase (BACH1) associated with breast cancer has been implicated in double strand break (DSB) repair. More recently, BACH1 (FANCJ) has been genetically linked to the chromosomal instability disorder Fanconi Anemia (FA). Understanding the roles of BACH1 in cellular DNA metabolism and how BACH1 dysfunction leads to tumorigenesis requires a comprehensive investiga...
متن کامل